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Abstract
The effect of anisotropy on the low-field electron spin resonance in the Kondo lattice
compounds YbRh2Si2 and YbIr2Si2 is assessed. It is shown that the g-shift in YbRh2Si2 is a
consequence of the anisotropy in the Yb–Yb interactions as mirrored in the molecular field
parameters characterizing the resonant susceptibility. It is also pointed out that the large
residual linewidth for YbIr2Si2 results from the modification of the Korringa contribution that
occurs when the Curie susceptibility of the isolated ion is replaced by the resonant susceptibility
with an experimentally determined molecular field parameter.

1. Introduction

The discovery of low-temperature electron spin resonance
(ESR) in the heavy fermion metal YbRh2Si2 is important
because it was the first observation of the ESR of a
Kondo ion (Yb3+) below the Kondo temperature (TK) in a
Kondo lattice system [1]. Subsequent studies have explored
various aspects of the resonance including the effects Ge
doping [2], the role of the residual linewidth [3], the local
and itinerant properties of the ESR [4], and the anisotropy in
the linewidth [5]. More recent studies have focused on field-
dependent collective modes and the bottleneck-like behavior of
the ESR spectra [6, 7].

The current theoretical situation can be summarized as
follows. Krellner et al have pointed out that ESR in
Kondo lattice systems is associated with the presence of
ferromagnetic correlations [8]. Two alternative approaches to
understanding the ESR have been developed. Abrahams and
Wölfle based their analysis on a semi-phenomenological Fermi
liquid description [9], whereas Schlottmann utilized a Kondo
lattice model [10]. Experimental studies carried out in fields
up to 8 T indicate that the Fermi liquid theory is applicable at
high fields for experiments carried out above 2 K, whereas at
low fields, B < 1 T, the Fermi liquid model breaks down above
2 K [11].

The theory outlined in [9] is based on a scalar interaction
between the conduction electron spin and the fluctuating field
that models the spin–lattice relaxation, whereas in [10], the
interaction between the conduction electrons and the Kondo
ions involves the scalar product of the electron spin and
the pseudospin of the ground doublet. In contrast, the
analysis in this work takes into account the anisotropies of
the static and dynamic susceptibilities. The approach is based
on an earlier theory of electron paramagnetic resonance in
anisotropic magnets [12], which, in turn, is an application of a
general approach to collective motion in many-particle systems
developed by Mori [13].

2. Analysis

In this section, we apply the general theory developed in [12] to
the case of a uniaxial system. We consider only the low-field
limit where the magnetization is proportional to the applied
field. When the static field is perpendicular to the c-axis, the
corresponding g-factor, g⊥, is expressed as

g⊥(T ) = g0
c (χ

R
⊥(T )/χR

‖ (T ))1/2 (1)

whereas when the static field is parallel to the c-axis we obtain
the result

g‖(T ) = (g02
a /g0

c)(χ
R
‖ (T )/χR

⊥(T )). (2)
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In equations (1) and (2) the symbols g0
a and g0

c designate
the parameters that characterize the microscopic g-tensor and
the superscript R refers to the resonant component of the static
susceptibility. By resonant component, the contribution from
the pseudospin doublet in resonance with the rf field is meant.
At low temperatures, the contribution from the ground state
doublet is often the dominant term. In situations where this is
not the case, the resonant contribution must be separated out.
Apart from a multiplicative factor, the resonant susceptibility
along the direction of the rf field can usually be obtained
by integration over the absorption line; in situations where
the form of the non-resonant contribution is known, e.g. a
constant, the resonant susceptibility can also be inferred by
fitting the measured static susceptibility to the resonant term
plus a constant. Specializing to a situation where the resonant
static susceptibilities are of the antiferromagnetic, molecular
field form, χ R ∼ C/(T+θ), equation (1) reduces to

g⊥(T ) = g0
c(C⊥/C‖)1/2(1 − (θ⊥ − θ‖)/(T + θ⊥))1/2

≈ g0
c (C⊥/C‖)1/2(1 − 0.5(θ⊥ − θ‖)/(T + θ⊥)) (3)

assuming that the fractional shift is �1. For g‖ we find

g‖(T ) = (g02
a /g0

c)(C‖/C⊥)(1 + (θ⊥ − θ‖)/(T + θ‖)). (4)

Equations (3) and (4) show that the shift in the g-factor is
proportional to the resonant susceptibility along the direction
of the applied field multiplied by a factor proportional to
θ⊥−θ‖. Hence, it is a consequence of the anisotropy, vanishing
in the limit of cubic symmetry. It is also evident that the shift
in g‖ is in the opposite direction from the shift in g⊥, so when
θ⊥ > θ‖ the shift in g⊥ is negative while the shift in g‖ is
positive.

The theory outlined in [12] also addresses the linewidth.
At low fields, the linewidth �ω (�ω = gμB�B/h̄) with the
static field perpendicular to the c-axis is the average of the zero-
field rate along the c-axis and the zero-field rate in the basal
plane; when the static field is along the c-axis, the linewidth is
equal to the zero-field rate in the basal plane, i.e.

�ω⊥ = (1/2)(�a + �c) (5)

�ω‖ = �a . (6)

From these equations, we see that the ratio �ω‖/�ω⊥
satisfies the inequality 0 < �ω‖/�ω⊥ < 2.

According to the general theory [13], the zero-field decay
rates appropriate to the relaxation of the magnetization involve
integrations over time of the relaxation functions for dMa/dt
and dMc/dt divided by T χ R

⊥ and T χ R
‖ , respectively. In the

standard treatment of the Korringa linewidth for an impurity
spin, the Curie susceptibility is appropriate. When Yb–Yb
interactions are significant, the Curie susceptibility is replace
by the molecular field susceptibilities, and the zero-field rates
take the form

�K
a = (θ⊥ + T ) fa (7)

and
�K

c = (θ‖ + T ) fc (8)

where fa and fc are assumed to be temperature independent.

The analysis of the linewidth in uniaxial systems presented
in [12] dealt only with the situations where the static field is
parallel or perpendicular to the c-axis. An estimate of the width
in the intermediate case, �ω(φ), can be obtained, giving the
limiting frequencies ω⊥ and ω‖ small imaginary parts i�ω⊥
and i�ω‖. The width is then identified with the imaginary part
of the expression

[(ω⊥ + i�ω⊥)2 sin2 φ + (ω‖ + i�ω‖)2 cos2 φ]1/2

where φ is the angle between the static field and the c-axis.
The resulting interpolation formula for �ω(φ) takes the form

�ω(φ) = g⊥�ω⊥ sin2 φ + g‖�ω‖ cos2 φ

(g2
⊥ sin2 φ + g2

‖ cos2 φ)1/2
. (9)

3. YbRh2Si2 and YbIr2Si2

The shift in the g-factor of YbRh2Si2 was analyzed in [7]. The
approach followed was to fit the experimental susceptibility
χ⊥ to the form const + C⊥/(θ⊥ + T ) over the temperature
range 2 K < T < 14 K. The value obtained for θ⊥, 1.48 K,
which agrees with the value obtained from the temperature
dependence of the integrated intensity in [5], was used in a two-
parameter fit to the g-factor data using equation (3), with θ‖ and
an overall multiplicative factor, g0

⊥, as adjustable parameters.
An excellent fit to the ESR data over the temperature range
4.2 K < T < 14 K was obtained with the values θ‖ = 1.09 K
and g0

⊥ = 3.66. As pointed out in [6], the g-shift reported in [1]
is also proportional to the resonant susceptibility and should be
characterized by equation (3) with a similar value of θ⊥ − θ‖.

At low temperatures, the ESR linewidth in YbRh2Si2 is of
the form [5]

�B(T ) = �B0 + bT + c�/(exp[�/T ] − 1) (10)

where �B0, b, c and � are constants. The third term on the
right-hand side of (10) reflects relaxation involving an excited
crystal field doublet at an energy ∼=10 meV above the ground
doublet. The second term, linear in T , has the Korringa form
appropriate to an isolated impurity. We hypothesize that the
first term is also associated with the Korringa mechanism and
is determined by the molecular field parameter θ appearing in
equations (7) and (8). With the static field perpendicular to the
c-axis, one has

�B0/b = 1
2 (θ‖ + θ⊥) (11)

taking the T -dependent term to be isotropic as found
experimentally [5]. With the values of θ inferred above,
the right-hand side of (11) is 1.3 K. This value is smaller
than the ratio �B0/b ≈ 2.2 K obtained from the linewidth
data in [1] and �B0/b ≈ 3.6 K from the data in [6],
possibly indicating a contribution to �B0 associated with
inhomogeneous broadening. Since it has not been possible to
observe the resonance with the static field parallel to the c-
axis, we are unable to compare the angular dependence of the
linewidth with the prediction given by equation (9).

Electron spin resonance in YbIr2Si2 has many points in
common with ESR in YbRh2Si2 with the important difference
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Figure 1. Angular dependence of the ESR linewidth in YbIr2Si2 at
5 K. The symbol φ denotes the angle between the static field and the
c-axis. The solid curve is the prediction of equation (9), evaluated
with g⊥ = 3.36, g‖ = 0.85, �ω⊥ = 0.42 GHz and
�ω‖ = 0.67 GHz. The data points are from [14].

(This figure is in colour only in the electronic version)

that it is possible to cover the entire range from B
perpendicular to the c-axis to B parallel to the c-axis [14].
The linewidth with the static field perpendicular to the c-axis
can also be fit to the form shown in equation (10) [14].
It is found that δB/b0 = 14 K, which is close to
the molecular field temperature characterizing the integrated
intensity above 5 K. This result suggests that the anomalously
large residual linewidth in YbIr2Si2 arises primarily from
interactions between Yb ions.

Since both the parallel and perpendicular g-factors and
linewidths are known for this compound, one can compare
the prediction of equation (9) with the measurements of [14].
The results of such a comparison are shown in figure 1. In
this figure, it is evident that the interpolation equation captures
the general features of the experimental data reasonably well,
except for the shallow minima at approximately ±45◦. It is
worth pointing out that shallow minima in the linewidth in the
neighborhood of ±45◦ were found in YbRh2Si2 at 5 K [5].

The behavior of the linewidth below 5 K is also
interesting. The width with the static field parallel to the c-
axis appears to decrease while the width in the perpendicular
direction remains approximately constant [14]. In the
parallel direction, according to equation (6), the linewidth is
inversely proportional to the transverse resonant susceptibility
which, as noted, shows an anomalous increase below 5 K

relative to the molecular field value. It is plausible that the
increase in χ R

⊥ is the cause of the decrease in the linewidth.
Why there is not a similar but weaker anomaly in the
perpendicular linewidth is not understood but it may have some
connection with a suppression of the ‘critical’ fluctuations
when the static field is in the basal plane.

4. Discussion

The purpose of this note has been to point out that
various features associated with the low-temperature ESR
in YbRh2Si2 and YbIr2Si2 reflect the anisotropy in the
resonant susceptibility and the presence of Yb–Yb interactions.
In particular, the temperature dependence of the g-shift is
determined by the temperature dependence of the ratio χ R

⊥/χ R
‖ ,

while the Korringa contributions to the linewidths are modified
by the factor χ0(T )/χ R(T ), where χ0(T ) denotes the Curie
(∼1/T ) susceptibility.

Acknowledgments

We would like to thank Carlos Rettori for stimulating our
interest in ESR in Kondo lattice systems, Pedro Schlottmann
for helpful discussions on the interpretation of the phase
diagram of YbRh2Si2, and Jörg Sichelschmidt for helpful
comments and for providing the numerical data shown in
figure 1.

References

[1] Sichelschmidt J, Ivanshin V A, Ferstl J, Geibel C and
Steglich F 2003 Phys. Rev. Lett. 91 156401

[2] Sichelschmidt J, Ferstl J, Geibel C and Steglich F 2005 Physica
B 359–361 17

[3] Wykhoff J et al 2007 Physica C 460–462 686
[4] Wykhoff J et al 2007 Sci. Technol. Adv. Mater. 8 389
[5] Sichelschmidt J et al 2007 J. Phys.: Condens. Matter

19 116204
[6] Duque J G S et al 2009 Phys. Rev. B 79 035122
[7] Holanda L M et al 2009 Physica B at press
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